Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 121: 103853, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38626664

RESUMO

Warming winters will change patterns of behaviour in temperate and polar arthropods, but we know little about the drivers of winter activity in animals such as ticks. Any changes in behaviour are likely to arise from a combination of both abiotic (e.g. temperature) and biotic (e.g. infection) drivers, and will have important consequences for survival and species interactions. Blacklegged ticks, Ixodes scapularis, have invaded Atlantic Canada and high proportions (30-50%) are infected with the bacteria causing Lyme disease, Borrelia burgdorferi. Infection is correlated with increased overwintering survival of adult females, and ticks are increasingly active in the winter, but it is unclear if infection is associated with activity. Further, we know little about how temperature drives the frequency of winter activity. Here, we exposed wild-caught, adult, female Ixodes scapularis ticks to three different winter temperature regimes (constant low temperatures, increased warming, and increased warming + variability) to determine the thermal and infection conditions that promote or suppress activity. We used automated behaviour monitors to track daily activity in individual ticks and repeated the study with fresh ticks over three years. Following exposure to winter conditions we determined whether ticks were infected with the bacteria B. burgdorferi and if infection was responsible for any patterns in winter activity. Warming conditions promoted increased activity throughout the overwintering period but infection with B. burgdorferi had no impact on the frequency or overall number of ticks active throughout the winter. Individual ticks varied in their levels of activity throughout the winter, such that some were largely dormant for several weeks, while others were active almost daily; however, we do not yet know the drivers behind this individual variation in behaviour. Overall, warming winters will heighten the risk of tick-host encounters.

2.
J Exp Biol ; 226(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37534841

RESUMO

The parasitic wasp Cotesia congregata suppresses feeding in its host, the caterpillar Manduca sexta, during specific periods of wasp development. We examined both feeding behaviour and the neurophysiology of the mandibular closer muscle in parasitized and unparasitized control M. sexta to determine how the wasp may accomplish this. To test whether the wasps activated a pre-existing host mechanism for feeding cessation, we examined the microstructure of feeding behaviour in caterpillars that stopped feeding due to illness-induced anorexia or an impending moult. These microstructures were compared with that shown by parasitized caterpillars. While there were overall differences between parasitized and unparasitized caterpillars, the groups showed similar progression in feeding microstructure as feeding ended, suggesting a common pattern for terminating a meal. Parasitized caterpillars also consumed less leaf area in 100 bites than control caterpillars at around the same time their feeding microstructure changed. The decline in food consumption was accompanied by fewer spikes per burst and shorter burst durations in chewing muscle electromyograms. Similar extracellular results were obtained from the motorneuron of the mandibular closer muscle. However, chewing was dramatically re-activated in non-feeding parasitized caterpillars if the connectives posterior to the suboesophageal ganglion were severed. The same result was observed in unparasitized caterpillars given the same treatment. Our results suggest that the reduced feeding in parasitized caterpillars is not due to damage to the central pattern generator (CPG) for chewing, motor nerves or chewing muscles, but is more likely to be due to a suppression of chewing CPG activity by ascending or descending inputs.


Assuntos
Manduca , Vespas , Animais , Vespas/fisiologia , Manduca/fisiologia , Mastigação , Comportamento Alimentar/fisiologia , Larva/fisiologia , Interações Hospedeiro-Parasita/fisiologia
3.
J Exp Biol ; 226(14)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37334669

RESUMO

Although skeletal muscle is a specialized tissue that provides the motor for movement, it also participates in other functions, including the immune response. However, little is known about the effects of this multitasking on muscle. We show that muscle loses some of its capacity while it is participating in the immune response. Caterpillars (Manduca sexta) were exposed to an immune challenge, predator stress or a combination of immune challenge and predator stress. The expression of immune genes (toll-1, domeless, cactus, tube and attacin) increased in body wall muscle after exposure to an immune challenge. Muscle also showed a reduction in the amount of the energy storage molecule glycogen. During an immune challenge, the force of the defensive strike, an important anti-predator behaviour in M. sexta, was reduced. Caterpillars were also less able to defend themselves against a common enemy, the wasp Cotesia congregata, suggesting that the effect on muscle is biologically significant. Our results support the concept of an integrated defence system in which life-threatening events activate organism-wide responses. We suggest that increased mortality from predation is a non-immunological cost of infection in M. sexta. Our study also suggests that one reason non-immunological costs of infection exist is because of the participation of diverse organs, such as muscle, in immunity.


Assuntos
Manduca , Vespas , Animais , Manduca/fisiologia , Vespas/fisiologia , Comportamento Predatório , Músculos , Larva/metabolismo
4.
Insect Sci ; 30(6): 1798-1809, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37147777

RESUMO

The tick, Ixodes scapularis, vectors pathogens such as Borrelia burgdorferi, the bacterium that causes Lyme disease. Over the last few decades I. scapularis has expanded its range, introducing a novel health threat into these areas. Warming temperatures appear to be one cause of its range expansion to the north. However, other factors are also involved. We show that unfed adult female ticks infected with B. burgdorferi have greater overwintering survival than uninfected female ticks. Locally collected adult female ticks were placed in individual microcosms and allowed to overwinter in both forest and dune grass environments. In the spring we collected the ticks and tested both dead and living ticks for B. burgdorferi DNA. Infected ticks had greater overwintering survival compared with uninfected ticks every winter for three consecutive winters in both forest and dune grass environments. We discuss the most plausible explanations for this result. The increased winter survival of adult female ticks could enhance tick population growth. Our results suggest that, in addition to climate change, B. burgdorferi infection itself may be promoting the northern range expansion of I. scapularis. Our study highlights how pathogens could work synergistically with climate change to promote host range expansion.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Feminino , Animais , Ixodes/microbiologia , Crescimento Demográfico , Doença de Lyme/epidemiologia , Doença de Lyme/microbiologia
5.
J Exp Biol ; 226(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36825944

RESUMO

Insects are critical to our ecosystems, but we do not fully understand their future in our warming world. Rising temperatures are affecting insect physiology in myriad ways, including changes to their immune systems and the ability to fight infection. Whether predicted changes in temperature will contribute to insect mortality or success, and the role of disease in their future survival, remains unclear. Although heat can enhance immunity by activating the integrated defense system (e.g. via the production of protective molecules such as heat-shock proteins) and accelerating enzyme activity, heat can also compromise the immune system through energetic-resource trade-offs and damage. The responses to heat are highly variable among species. The reasons for this variability are poorly known, and we are lagging in our understanding of how and why the immune system responds to changes in temperature. In this Commentary, we highlight the variation in insect immune responses to heat and the likely underlying mechanisms. We suggest that we are currently limited in our ability to predict the effects of rising temperatures on insect immunity and disease susceptibility, largely owing to incomplete information, coupled with a lack of tools for data integration. Moreover, existing data are concentrated on a relatively small number of insect Orders. We provide suggestions for a path towards making more accurate predictions, which will require studies with realistic temperature exposures and housing design, and a greater understanding of both the thermal biology of the immune system and connections between immunity and the physiological responses to heat.


Assuntos
Mudança Climática , Ecossistema , Animais , Suscetibilidade a Doenças , Insetos/fisiologia , Temperatura
6.
Sci Rep ; 12(1): 12999, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906288

RESUMO

The blacklegged tick, Ixodes scapularis, vectors Borrelia burgdorferi, a bacterium that causes Lyme Disease. Although synthetic pesticides can reduce tick numbers, there are concerns about their potential effects on beneficial insects, such as pollinators. Plant-based pest control agents such as essential oils could provide an alternative because they have low environmental persistency; however, these products struggle to provide effective control. We found a new natural acaricide, balsam fir (Abies balsamea) needles, that kill overwintering I. scapularis ticks. We extracted the essential oil from the needles, analyzed its chemical composition, and tested it for acaricidal activity. We placed ticks in tubes with substrate and positioned the tubes either in the field or in incubators simulating winter temperatures. We added balsam fir essential oil, or one of the main components of balsam fir essential oil (i.e., ß-pinene), to each tube. We found that both the oil and ß-pinene kill overwintering ticks. Whole balsam fir needles require several weeks to kill overwintering ticks, while the essential oil is lethal within days at low temperatures (≤ 4 °C). Further, low temperatures increased the efficacy of this volatile essential oil. Higher temperatures (i.e., 20 °C) reduce the acaricidal effectiveness of the essential oil by 50% at 0.1% v/v. Low temperatures may promote the effectiveness of other natural control products. Winter is an overlooked season for tick control and should be explored as a possible time for the application of low toxicity products for successful tick management.


Assuntos
Abies , Borrelia burgdorferi , Ixodes , Doença de Lyme , Óleos Voláteis , Animais , Temperatura Baixa , Ixodes/microbiologia , Doença de Lyme/microbiologia , Agulhas , Óleos Voláteis/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-33508422

RESUMO

An explosion of data has provided detailed information about organisms at the molecular level. For some traits, this information can accurately predict phenotype. However, knowledge of the underlying molecular networks often cannot be used to accurately predict higher order phenomena, such as the response to multiple stressors. This failure raises the question of whether methodological reductionism is sufficient to uncover predictable connections between molecules and phenotype. This question is explored in this paper by examining whether our understanding of the molecular responses to food limitation and pathogens in insects can be used to predict their combined effects. The molecular pathways underlying the response to starvation and pathogen attack in insects demonstrates the complexity of real-world physiological networks. Although known intracellular signaling pathways suggest that food restriction should enhance immune function, a reduction in food availability leads to an increase in some immune components, a decrease in others, and a complex effect on disease resistance in insects such as the caterpillar Manduca sexta. However, our inability to predict the effects of food restriction on disease resistance is likely due to our incomplete knowledge of the intra- and extracellular signaling pathways mediating the response to single or multiple stressors. Moving from molecules to organisms will require novel quantitative, integrative and experimental approaches (e.g. single cell RNAseq). Physiological networks are non-linear, dynamic, highly interconnected and replete with alternative pathways. However, that does not make them impossible to predict, given the appropriate experimental and analytical tools. Such tools are still under development. Therefore, given that molecular data sets are incomplete and analytical tools are still under development, it is premature to conclude that methodological reductionism cannot be used to predict phenotype.


Assuntos
Adaptação Fisiológica/fisiologia , Manduca/fisiologia , Animais , Larva/fisiologia
8.
Physiol Biochem Zool ; 93(6): 450-465, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33147114

RESUMO

AbstractResource-intensive traits, such as dispersal and reproduction, can be difficult to express simultaneously because of resource limitations. One solution is to switch between resource-intensive behaviors. Such phenotypic plasticity is one strategy that organisms use to funnel resources from one expensive trait to another. In crickets (Gryllus texensis), the development and maintenance of flight muscles reduce resource availability for reproduction, leading to physiological trade-offs between the two traits. Long-winged female G. texensis can histolyze their wing muscles, resulting in increased egg production, but they can then no longer fly. Using a diet that mimics food availability in the field, we found that long-winged females adopted one of the three following strategies: early reproduction, intermediate reproduction, and late reproduction. Some late reproducers maintained their flight capability until the end of their natural life span and laid few eggs. If females lost the ability to fly (i.e., their hind wings are removed), they laid eggs earlier, leading to increased reproductive output. However, other environmental cues (e.g., an increased number of mates, increased oviposition substrate quality, or a bout of dispersal flight) had no effect. Late-reproducing females laid 96% fewer eggs than early reproducers, suggesting that late reproduction exacts a huge fitness cost. Nevertheless, some females maintain their flight muscles to the end of their natural life span in both the lab and the field. We suggest that the ability to fly allows for bet hedging against an environmental catastrophe (e.g., drought or flood). This benefit may help explain the persistence of late-reproducing long-winged females, despite the cost of this choice. As climate change increases drought and flood in Texas, late dispersal may be one factor that helps this species survive in the future. An increased understanding of factors that maintain seemingly low fitness strategies can help us predict the resilience of species under climate change.


Assuntos
Gryllidae/crescimento & desenvolvimento , Gryllidae/fisiologia , Oviposição/fisiologia , Asas de Animais/fisiologia , Adaptação Fisiológica , Animais , Feminino , Voo Animal/fisiologia , Masculino , Músculos , Fenótipo , Reprodução/fisiologia
9.
J Exp Biol ; 223(Pt 19)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046577

RESUMO

For many animals, the gut microbiome plays an essential role in immunity and digestion. However, certain animals, such as the caterpillar Manduca sexta, do not have a resident gut microbiome. Although these animals do have bacteria that pass through their gut from their natural environment, the absence of such bacteria does not reduce growth or survival. We hypothesized that M. sexta would sterilize their gut as a protective measure against secondary infection when faced with a gut infection or exposure to heat-killed bacteria in the blood (haemolymph). However, we found that gut sterilization did not occur during either type of immune challenge, i.e. bacterial numbers did not decrease. By examining the pattern of immune-related gene expression, gut pH, live bacterial counts and mass change (as a measure of sickness behaviour), we found evidence for physiological trade-offs between regulating the microbiome and defending against systemic infections. Caterpillars exposed to both gut pathogens and a systemic immune challenge had higher numbers of bacteria in their gut than caterpillars exposed to a single challenge. Following a multivariate analysis of variance, we found that the response patterns following an oral challenge, systemic challenge or dual challenge were unique. Our results suggest that the immune response for each challenge resulted in a different configuration of the immunophysiological network. We hypothesize that these different configurations represent different resolutions of physiological trade-offs based on the immune responses needed to best protect the animal against the present immune challenges.


Assuntos
Microbioma Gastrointestinal , Manduca , Microbiota , Animais , Hemolinfa , Larva
10.
J Comp Physiol B ; 190(4): 381-390, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32529590

RESUMO

When animals are faced with a life-threatening challenge, they mount an organism-wide response (i.e. Plan A). For example, both the stress response (i.e. fight-or-flight) and the immune response recruit molecular resources from other body tissues, and induce physiological changes that optimize the body for defense. However, pathogens and predators often co-occur. Animals that can optimize responses for a dual challenge, i.e. simultaneous predator and pathogen attacks, will have a selective advantage. Responses to a combined predator and pathogen attack have not been well studied, but this paper summarizes the existing literature in insects. The response to dual challenges (i.e. Plan B) results in a suite of physiological changes that are different from either the stress response or the immune response, and is not a simple summation of the two. It is also not a straight-forward trade-off of one response against the other. The response to a dual challenge (i.e. Plan B) appears to resolve physiological trade-offs between the stress and immune responses, and reconfigures both responses to provide the best overall defense. However, the dual response appears to be more costly than either response occurring singly, resulting in greater damage from oxidative stress, reduced growth rate, and increased mortality.


Assuntos
Insetos/fisiologia , Estresse Fisiológico , Animais , Interações Hospedeiro-Patógeno , Insetos/microbiologia , Comportamento Predatório
11.
Philos Trans R Soc Lond B Biol Sci ; 374(1785): 20190278, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31544611

RESUMO

Immune-nociceptor connections are found in animals across phyla. Local inflammation and/or damage results in increased nociceptive sensitivity of the affected area. However, in mammals, immune responses far from peripheral nociceptors, such as immune responses in the gut, produce a general increase in peripheral nociceptive sensitivity. This phenomenon has not, to our knowledge, been found in other animal groups. We found that consuming heat-killed pathogens reduced the tactile force needed to induce a defensive strike in the caterpillar Manduca sexta. This increase in the nociceptive sensitivity of the body wall is probably part of the reconfiguration of behaviour and physiology that occurs during an immune response (e.g. sickness behaviour). This increase may help enhance anti-predator behaviour as molecular resources are shifted towards the immune system. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.


Assuntos
Manduca/imunologia , Nociceptividade , Animais , Trato Gastrointestinal/imunologia , Larva/crescimento & desenvolvimento , Larva/imunologia , Manduca/crescimento & desenvolvimento
12.
Curr Opin Insect Sci ; 33: 25-29, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31358191

RESUMO

Some parasites manipulate host behavior by exploiting the host's behavioral control networks. This review explores two examples of this approach using parasites from opposite ends of the size spectrum, that is, viruses and parasitic insects. The first example explores the use of the gene (egt) by some baculoviruses to deactivate the hormone 20-hydroxyecdysone. Suppressing this chemical signal prevents the expression of behaviors that could reduce viral transmission. The second example explores how a parasitic wasp uses the host's immune/neural communication system to control host behavior. When a host's manipulated behavior requires complex neural coordination, exploitation of host behavioral control systems is likely to be involved. Simpler host behaviors can be induced by damage to host tissues.


Assuntos
Comportamento Animal , Insetos/parasitologia , Insetos/virologia , Animais , Glucosiltransferases/genética , Interações Hospedeiro-Parasita/fisiologia , Insetos/fisiologia , Vírus/genética , Vespas
13.
PLoS One ; 14(5): e0209957, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31091239

RESUMO

Should females alter their reproductive strategy when attacked by pathogens? Two hypotheses provide opposite predictions. Terminal reproductive investment theory predicts that reproduction should increase when the risk of death increases. However, physiological trade-offs between reproduction and immune function might be expected to produce a decrease in reproduction during a robust immune response. There is evidence for both hypotheses. We examine whether age determines the effect of an immune challenge on reproductive strategy in long-winged females of the Texas field cricket, Gryllus texensis, when fed an ecologically valid (i.e. limited) diet. The limited diet reduced reproductive output. However, even under resource-limited conditions, immune challenge had no effect on the reproductive output of young or middle-aged females. Both reproductive output and immune function (lysozyme-like activity and phenoloxidase (PO) activity) increased with age, which is contrary to both hypotheses. We hypothesize that PO activity is pleiotropic and represents an investment in both reproduction and immune function. Three proPO genes (identified in a published RNA-seq dataset (transcriptome)) were expressed either in the fat body or the ovaries (supporting the hypothesis that PO is bifunctional). The possible bifunctionality of PO suggests that it may not be an appropriate immune measure for studies on immune/reproductive trade-offs. This study also suggests that the threshold for terminal reproductive investment may not decrease prior to senescence in some species.


Assuntos
Gryllidae/fisiologia , Imunidade , Reprodução , Fatores Etários , Animais , Feminino , Perfilação da Expressão Gênica , Hemolinfa/imunologia , Imunidade/genética , Ovário/imunologia , Ovário/metabolismo , Reprodução/genética , Fatores Sexuais
14.
J Exp Biol ; 221(Pt 3)2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29217626

RESUMO

Mounting an immune response consumes resources, which should lead to increased feeding. However, activating the immune system reduces feeding (i.e. illness-induced anorexia) in both vertebrates and invertebrates, suggesting that it may be beneficial. We suggest that illness-induced anorexia may be an adaptive response to conflicts between immune defense and food detoxification. We found that activating an immune response in the caterpillar Manduca sexta increased its susceptibility to the toxin permethrin. Conversely, a sublethal dose of permethrin reduced resistance to the bacterium Serratia marcescens, demonstrating a negative interaction between detoxification and immune defense. Immune system activation and toxin challenge each depleted the amount of glutathione in the hemolymph. Increasing glutathione concentration in the hemolymph increased survival for both toxin- and immune+toxin-challenged groups. The results of this rescue experiment suggest that decreased glutathione availability, such as occurs during an immune response, impairs detoxification. We also found that the expression of some detoxification genes were not upregulated during a combined immune-toxin challenge, although they were when animals received a toxin challenge alone. These results suggest that immune defense reduces food detoxification capacity. Illness-induced anorexia may protect animals by decreasing exposure to food toxins when detoxification is impaired.


Assuntos
Antibiose , Imunidade Inata , Inseticidas/toxicidade , Manduca/imunologia , Manduca/microbiologia , Permetrina/toxicidade , Serratia marcescens/fisiologia , Animais , Ingestão de Alimentos , Larva/imunologia , Larva/microbiologia , Manduca/crescimento & desenvolvimento , Desentoxicação Metabólica Fase I
15.
J Exp Biol ; 220(Pt 5): 868-875, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011823

RESUMO

Although predator exposure increases the risk of wound infections, it typically induces immunosuppression. A number of non-mutually exclusive hypotheses have been put forward to explain this immunosuppression, including: trade-offs between the immune system and other systems required for anti-predator behaviour, redistribution of immune resources towards mechanisms needed to defend against wound infections, and reconfiguration of the immune system to optimize defence under the physiological state of fight-or-flight readiness. We tested the ability of each hypothesis to explain the effects of chronic predator stress on the immune system of the caterpillar Manduca sexta Predator exposure induced defensive behaviours, reduced mass gain, increased development time and increased the concentration of the stress neurohormone octopamine. It had no significant effect on haemocyte number, melanization rate, phenoloxidase activity, lysozyme-like activity or nodule production. Predator stress reduced haemolymph glutathione concentrations. It also increased constitutive expression of the antimicrobial peptide attacin-1 but reduced attacin-1 expression in response to an immune challenge. These results best fit the immune reconfiguration hypothesis, although the other hypotheses are also consistent with some results. Interpreting stress-related changes in immune function may require an examination at the level of the whole organism.


Assuntos
Manduca/fisiologia , Comportamento Predatório , Estresse Fisiológico , Animais , Reação de Fuga , Regulação da Expressão Gênica , Glutationa/análise , Glutationa/imunologia , Hemócitos/citologia , Hemócitos/imunologia , Hemolinfa/imunologia , Tolerância Imunológica , Proteínas de Insetos/análise , Proteínas de Insetos/imunologia , Manduca/citologia , Manduca/genética , Manduca/imunologia , Octopamina/análise , Octopamina/imunologia
16.
Horm Behav ; 88: 25-30, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27746212

RESUMO

The classic biomedical view is that stress hormone effects on the immune system are largely pathological, especially if the stress is chronic. However, more recent interpretations have focused on the potential adaptive function of these effects. This paper examines stress response-immune system interactions from a physiological network perspective, using insects because of their simpler physiology. For example, stress hormones can reduce disease resistance, yet activating an immune response results in the release of stress hormones in both vertebrates and invertebrates. From a network perspective, this phenomenon is consistent with the 'sharing' of the energy-releasing ability of stress hormones by both the stress response and the immune system. Stress-induced immunosuppression is consistent with the stress response 'borrowing' molecular components from the immune system to increase the capacity of stress-relevant physiological processes (i.e. a trade off). The insect stress hormones octopamine and adipokinetic hormone can also 'reconfigure' the immune system to help compensate for the loss of some of the immune system's molecular resources (e.g. apolipophorin III). This view helps explain seemingly maladaptive interactions between the stress response and immune system. The adaptiveness of stress hormone effects on individual immune components may be apparent only from the perspective of the whole organism. These broad principles will apply to both vertebrates and invertebrates.


Assuntos
Sistema Imunitário/fisiologia , Estresse Fisiológico/imunologia , Animais , Apolipoproteínas/metabolismo , Hormônios de Inseto/metabolismo , Insetos , Octopamina/metabolismo , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo
17.
J Exp Biol ; 219(Pt 23): 3750-3758, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27634401

RESUMO

Some parasites alter the behaviour of their hosts. The larvae of the parasitic wasp Cotesia congregata develop within the body of the caterpillar Manduca sexta During the initial phase of wasp development, the host's behaviour remains unchanged. However, once the wasps begin to scrape their way out of the caterpillar, the caterpillar host stops feeding and moving spontaneously. We found that the caterpillar also temporarily lost sensation around the exit hole created by each emerging wasp. However, the caterpillars regained responsiveness to nociception in those areas within 1 day. The temporary reduction in skin sensitivity is probably important for wasp survival because it prevents the caterpillar from attacking the emerging wasp larvae with a defensive strike. We also found that expression of plasmatocyte spreading peptide (PSP) and spätzle genes increased in the fat body of the host during wasp emergence. This result supports the hypothesis that the exiting wasps induce a cytokine storm in their host. Injections of PSP suppressed feeding, suggesting that an augmented immune response may play a role in the suppression of host feeding. Injection of wasp larvae culture media into non-parasitized caterpillars reduced feeding, suggesting that substances secreted by the wasp larvae may help alter host behaviour.


Assuntos
Comportamento Animal/fisiologia , Comportamento Alimentar/fisiologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Manduca/fisiologia , Vespas/fisiologia , Animais , Peptídeos e Proteínas de Sinalização Intercelular , Nociceptividade/fisiologia , Peptídeos/genética , Peptídeos/metabolismo
18.
Behav Processes ; 128: 134-43, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27189926

RESUMO

Immune activation alters behaviour (i.e. sickness behaviour) in animals across phyla and is thought to aid recovery from infection. Hypotheses regarding the adaptive function of different sickness behaviours (e.g. decreased movement and appetite) include the energy conservation and predator avoidance hypotheses. These hypotheses were originally developed for mammals (e.g. Hart, 1988), however similar sickness behaviours are also observed in insects (e.g., crickets). We predicted that immune-challenged crickets (Gryllus texensis) would reduce feeding, grooming, and locomotion as well as increase shelter use, consistent with the energy conservation and predator avoidance hypotheses. We found evidence of illness-induced anorexia in adult and juvenile crickets, consistent with previous research (Adamo et al., 2010), but contrary to expectations, we found an increase in grooming, and no evidence that crickets decreased locomotion or increased shelter use in response to immune challenge. Therefore, our results do not support the energy conservation or predator avoidance hypotheses. The difference in sickness behaviour between insects and mammals is probably due, in part, to the lack of physiological fever in insects. We hypothesize that the lack of physiological fever reduces the need for energy conservation, decreasing the benefits of some sickness behaviours such as increased shelter use. These results, taken together with others in the literature, suggest that ectotherms and endotherms may differ significantly in the selective forces leading to the evolution of most sickness behaviours.


Assuntos
Comportamento Animal , Gryllidae , Comportamento de Doença , Animais , Evolução Biológica , Especificidade da Espécie
19.
J Exp Biol ; 219(Pt 5): 706-18, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747906

RESUMO

Dwindling resources might be expected to induce a gradual decline in immune function. However, food limitation has complex and seemingly paradoxical effects on the immune system. Examining these changes from an immune system network perspective may help illuminate the purpose of these fluctuations. We found that food limitation lowered long-term (i.e. lipid) and short-term (i.e. sugars) energy stores in the caterpillar Manduca sexta. Food limitation also: altered immune gene expression, changed the activity of key immune enzymes, depressed the concentration of a major antioxidant (glutathione), reduced resistance to oxidative stress, reduced resistance to bacteria (Gram-positive and -negative bacteria) but appeared to have less effect on resistance to a fungus. These results provide evidence that food limitation led to a restructuring of the immune system network. In severely food-limited caterpillars, some immune functions were enhanced. As resources dwindled within the caterpillar, the immune response shifted its emphasis away from inducible immune defenses (i.e. those responses that are activated during an immune challenge) and increased emphasis on constitutive defenses (i.e. immune components that are produced consistently). We also found changes suggesting that the activation threshold for some immune responses (e.g. phenoloxidase) was lowered. Changes in the configuration of the immune system network will lead to different immunological strengths and vulnerabilities for the organism.


Assuntos
Manduca/crescimento & desenvolvimento , Manduca/imunologia , Animais , Bacillus cereus/imunologia , Beauveria/imunologia , Privação de Alimentos , Regulação da Expressão Gênica no Desenvolvimento , Hemolinfa/química , Sistema Imunitário/fisiologia , Larva/imunologia , Larva/metabolismo , Manduca/metabolismo , Manduca/microbiologia , Serratia marcescens/imunologia
20.
Integr Comp Biol ; 54(2): 159-65, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24813461

RESUMO

Animals have a number of behavioral defenses against infection. For example, they typically avoid sick conspecifics, especially during mating. Most animals also alter their behavior after infection and thereby promote recovery (i.e., sickness behavior). For example, sick animals typically reduce the performance of energetically demanding behaviors, such as sexual behavior. Finally, some animals can increase their reproductive output when they face a life-threatening immune challenge (i.e., terminal reproductive investment). All of these behavioral responses probably rely on immune/neural communication signals for their initiation. Unfortunately, this communication channel is prone to manipulation by parasites. In the case of sexually transmitted infections (STIs), these parasites/pathogens must subvert some of these behavioral defenses for successful transmission. There is evidence that STIs suppress systemic signals of immune activation (e.g., pro-inflammatory cytokines). This manipulation is probably important for the suppression of sickness behavior and other behavioral defenses, as well as for the prevention of attack by the host's immune system. For example, the cricket, Gryllus texensis, is infected with an STI, the iridovirus IIV-6/CrIV. The virus attacks the immune system, which suffers a dramatic decline in its ability to make proteins important for immune function. This attack also hampers the ability of the immune system to activate sickness behavior. Infected crickets cannot express sickness behavior, even when challenged with heat-killed bacteria. Understanding how STIs suppress sickness behavior in humans and other animals will significantly advance the field of psychoneuroimmunology and could also provide practical benefits.


Assuntos
Afrodisíacos/farmacologia , Comportamento Animal , Interações Hospedeiro-Parasita/fisiologia , Invertebrados/fisiologia , Invertebrados/parasitologia , Vertebrados/fisiologia , Vertebrados/parasitologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...